Näytetään tekstit, joissa on tunniste FEEP. Näytä kaikki tekstit
Näytetään tekstit, joissa on tunniste FEEP. Näytä kaikki tekstit

perjantai 3. helmikuuta 2012

Etäyksikön suunnittelua


Remote Unit Component Design Review -kokouksen osallistujat Upsalassa 7.-8.11.2011.
Kuva: Sini Merikallio
Sähköpurjekolumni 3.2.2012 

EU-projektissa kehitettävässä sähköpurjeessa jokaisen liean päähän tulee niin sanottu etäyksikkö, jotka sidotaan toisiinsa rei'itetystä muovinauhasta tehdyillä apulieoilla. Varmuuden vuoksi kukin apulieka avataan kahdesta suunnasta eli jokainen etäyksikkö sisältää kaksi apuliekakelaa. Etäyksikössä on myös pieni rakettimoottori, jonka avulla sähköpurjetakila pannaan pyörimään samalla kun sitä avataan. Etäyksiköiden moottoreilla saatetaan myös säätää takilan pyörimisnopeutta myöhemminkin, jos tarve vaatii. Etäyksikön moottori on joko tavallinen kylmäkaasumoottori tai pieni FEEP-ionimoottori. Kumpaakin vaihtoehtoa kehitetään rinnakkain.

RU Component Design Review -kokouspöytä Upsalassa 9.-10.1.2012.
Kuva: Sini Merikallio
Etäyksikön suunnittelu on ollut varsin mielenkiintoinen insinööritehtävä. Päävastuun siitä kantavat ruotsalaiset, kun taas elektroniikkaa tulee Virosta, apuliekarullat Saksasta ja FEEP-moottori Italiasta. Mielenkiintoisen siitä tekee se että etäyksikön pitää pystyä toimimaan 0.9-4 AU:n etäisyyksillä auringosta ja toisaalta siitä halutaan tehdä mahdollisimman kevyt, mielellään alle puolikiloinen. Lämpösuunnittelua helpottaa se että etäyksikön auringon puoleinen sivu on aina sama, joskin 60 asteen kääntymä perusasennosta sallitaan. Auringon puolella on aurinkokennoilla päällystetty levy, jonka takana varjossa oleva laatikko sisältää elektroniikan ja muut lämpötilavaatimuksiltaan kriittiset osat. Jos laatikosta kytkettäisiin sähköt pois, se jäähtyisi hitaasti varsin matalaan lämpötilaan, mutta melko pieni teho riittää pitämään sen sisälämpötilan halutuissa rajoissa. Tämä teho saadaan aurinkopaneeleista myös 4 AU:n etäisyydellä.

RU Component Design Review -kokouspöytä Upsalassa. Petri Toivanen on iloisella tuulella.
Kuva: Sini Merikallio
Etäyksikön suunnittelu on ollut mielenkiintoista, koska se ei ole vain laatikko johon tarvittavat komponentit ladotaan, vaan laitteen muotoon vaikuttavat hyvin monet eri tekijät. Esimerkiksi laitteen painopiste ei saa siirtyä liikaa kun kylmäkaasumoottorin tai FEEP-moottorin ajoaine kuluu eikä moottorin melko leveä suihku saa osua laitteen mihinkään osaan eikä etenkään apu- tai pääliekaan. Painopisteen täytyy myös pysyä selvästi apuliekojen kiinnityskohdan ulkopuolella, koska muuten yksikkö voisi kiepsahtaa ympäri lennon aikana jolloin aurinkopaneeli jäisi varjoon. Aurinkosuojan täytyy estää auringonvalon osuminen elektroniikkalaatikkoon myös 60 asteen kallistuskulmalla, joten laatikosta tehtiin mahdollisimman matala ja aurinkosuojan reunat taivutettiin sisäänpäin. Laitteen pitää olla riittävän tukeva kestääkseen laukaisutärinän ollessaan kiinnitettynä pääaluksen kylkeen, mutta toisaalta elektroniikkalaatikon ja aurinkosuojan välisten kiinnikkeiden täytyy olla riittävän hennot, jotta ne eivät muodosta jäähdyttävää lämpösiltaa 4 AU:ssa. Ratkaisu oli ripustaa elektroniikkalaatikko ja apuliekarullat erikseen pääalukseen, jolloin mainittujen hentojen kiinnikkeiden riittää kantaa laukaisutärinän aikana vain suhteellisen kevyen aurinkosuojalevyn värähtelevä massa. Näin kiinnikkeet saatiin ohuemmiksi ja niiden lämpövuodot pienemmiksi, mikä vähensi tehonkulutusta 4 AU:ssa ja teki siten mahdolliseksi pienentää ja keventää aurinkopaneelia ja aurinkosuojaa, jolloin kiinnikkeet saatiin entistäkin ohuemmiksi. Laite keventyi tämän ansiosta yli kilosta nykyiseen 550 grammaan.

Pekka Janhunen

Tästä videosta käy ilmi etäyksiköiden rooli.

maanantai 15. marraskuuta 2010

Sähköpurjeen sovelluksia, osa 5: Kiertoajelu asteroideilla

Koska sähköpurje ei tarvitse polttoainetta, sitä käyttävä luotain voisi lentää useiden asteroidien vierellä havaintoja tehden. Asteroidivyöhykkeellä lennettäessä sähköpurjeen suuri tehokkuus pääsee oikeuksiinsa, koska luotain pysyy jatkuvasti sopivalla etäisyydellä auringosta. Esimerkiksi kymmenen vuoden tehtävässä yhden newtonin sähköpurje (massa 100 kg) tuottaa 300 miljoonan newtonsekunnin kokonaisimpulssin, mikä vastaa sadan tonnin kemiallisen raketin tuottamaa impulssia. Jos tuo satakiloinen purje on asennettu tonnin painoiseen alukseen, delta-v:tä kertyy kymmenvuotisen tehtävän aikana huimat 300 km/s. Jos vastaava tehtävä yritettäisiin suorittaa ionimoottorilla, ominaisimpulssin pitäisi olla 30,000 sekuntia ja tehon parisataa kilowattia. Parhaat nykyiset aurinkopaneelit tuottavat noin 100 W/kg, jolloin jo pelkkä aurinkopaneelisto painaisi pari tonnia eli 20 kertaa enemmän kuin sähköpurje. Jos sähköpurje saadaan toimimaan edes likimain ennustetulla tavalla, se tulee olemaan täysin ylivoimainen propulsiolaite tämäntyyppisissä tehtävissä.

Asteroidivyöhykkeellä on paitsi asteroideja, myös niistä irronneita kiviä, soraa, hiekkaa ja pölyä. Ne voivat periaatteessa katkoa sähköpurjeliekoja. Emme osaa tarkasti arvioida liean katkeamisen todennäköisyyttä, koska emme tiedä kuinka paljon pienkappaleita asteroidivyöhykkeellä on. Meteoroidimallien mukaan asteroidivyöhykkeellä esiintyy suhteellisesti vähemmän hienojakoista pölyä ja enemmän pikkukiviä kuin lähellä Aurinkoa. Tällöin asteroidivyöhykkeelle optimoitu sähköpurjelieka on leveämpi kuin esimerkiksi Merkuriuksen radalle suunniteltu. Leveämpi lieka on nopeampi valmistaa, koska tarvitaan vähemmän lankaliitoksia liean pituusyksikköä kohti. Toisaalta liekarullien pitää olla kookkaampia.
Videolla löydettyjä asteroideja vuodesta 1980 lähtien - aikamoista ruuhkaa loppua kohden! Havaintomenetelmien parantuessa myös tunnettujen asteroidien lukumäärä on noussut kovaa vauhtia. Video: Scott Manley, Lowellin observatorio

Liekojen meteoroidikestävyyttä voidaan tarvittaessa parantaa lisäämällä rinnakkaisten lankasäikeiden määrää. Asteroidivyöhykkeen kivi ja sora ei siis ole sähköpurjeelle periaatteellinen ongelma.
Toinen tärkeä seikka asteroideja tutkivalle sähköpurjeelle on navigointitarkkuus. Jos luotaimen on tarkoitus lentää esimerkiksi muutamia päiviä 100 km päässä asteroidista tarkkojen kuvien ja alkuaineanalyysin suorittamiseksi, sähköpurjeen oma lentotarkkuus ei ehkä riitä vaan mahdollisesti tarvitaan avuksi esimerkiksi FEEP-moottoreista saatavaa tarkasti säädettävää työntövoimaa. Lisäksi sähköpurjelieat ja itse alus aina heiluvat jonkin verran. Jotta saataisiin tarkkoja kuvia asteroidin pinnasta, kamerassa pitää olla laitteisto, joka pitää sen tarkasti halutussa suunnassa huolimatta avaruusaluksen rungon liikkeistä.

Kuinka monta asteroidia sähköpurjemissio voisi tutkia kymmenessä vuodessa? Kysymystä ei ole tutkittu ja se vaatii joka tapauksessa tarkentavia oletuksia. Ovatko kaikki asteroidit kiinnostavia? Halutaanko lentää tutkittavan asteroidin rinnalla vai riittääkö suuremmalla nopeudella tapahtuva lyhyt ohilento? Halutaanko tutkia Maan lähiasteroideja (ns. NEO-asteroideja, Near-Earth Objects) vai käydä läpi koko asteroidivyöhyke sisältä ulkoreunalle asti?
Pekka Janhunen puhumassa sähköpurjeesta. Kuva: Riina Varol, Wikimedia
Ehkä tarkan lentosuunnitelman tekeminen on tarpeetonta ja asteroidien sähköpurjekartoitukseen voitaisiin suhtautua kuten Mars-mönkijöihin, joita käskytetään tilanteen mukaan mielenkiintoiselta kiveltä ja kraatterilta toiselle. Tärkeintä on oppia lentämään ja tekemään laadukkaita havaintoja sähköpurjealuksesta käsin. NEO-asteroidit olisivat siinä mielessä kiitollinen aloituskohde että silloin pysyttäisiin melko lähellä Maata, jolloin meteoroidiympäristö ja terminen ympäristö ovat samantapaisia kuin satelliiteilla ja datan siirto Maahan on suhteellisen helppoa lyhyehkön etäisyyden takia. NEO-asteroidit olisivat tärkeimmät myös törmäysten eston ja asteroidien kaivostoiminnan kannalta.

Asteroidien kaivostoiminta on tulevaisuuden avaruustoiminnan todennäköinen kulmakivi. Asteroidien raaka-aineista voidaan valmistaa rakettipolttoaineet suurten aurinkovoimasatelliittien nostamiseen radoilleen ja ehkä myöhemmin myös satelliittien rakenteellisia osia tai jopa avaruuden siirtokuntien raskaita rakenteita. Maan päällä puolestaan asteroideilta tuodut kohtuuhintaiset platinaryhmän metallit saattaisivat mahdollistaa esimerkiksi polttokennojen laajamittaisen käytön. Asteroidien etu verrattuna Kuuhun on, että kaivannaisia ei tarvitse nostaa pinnalta raketeilla ja että hiilikondriittiasteroideilla esiintyy runsaasti myös vettä ja hiiltä rakettipolttoaineiden raaka-aineiksi. Toisaalta asteroidien haittapuoli on pääomakuluja lisäävä ajallisesti pitkä siirtomatka, joten ehkä lopullisempi ratkaisu on käyttää myös kuuperäisiä aineita nostaen niitä raketeilla asteroidiperäisen metaanin tai vedyn avulla (happi voitaneen tuottaa Kuun kivistä). Joka tapauksessa sähköpurjeet mahdollistavat liikenteen asteroideille ja takaisin kohtuullisin kustannuksin.

Pekka Janhunen

keskiviikko 29. syyskuuta 2010

Kestävää ja laajaa avaruustoimintaa


Miten paljon avaruustoiminta saastuttaa? Voisiko sitä tehdä nykyistä puhtaammin? Jos jonain päivänä rakennetaan aurinkovoimasatelliitteja, tarvitaan paljon enemmän rakettilaukaisuja. Olisiko nykyistä tuhat kertaa laajempi avaruustoiminta ekologisesti kestävää?

Jos esimerkiksi rakennetaan aurinkovoimasatelliitteja, rakettilaukaisujen tahti voi kiihtyä nykyisestä sata- tai tuhatkertaiseksi, ja nykyiselläkin tahdilla avaruustoiminnan ekologista puolta kannattaa aika ajoin miettiä.

Kiinteän polttoaineen kantoraketeista pitäisi päästä eroon. Ne ovat vaarallisia tuottaa ja käsitellä ja ne tuottavat myrkyllisiä ja otsonikerrokselle haitallisia palamistuotteita kuten suolahappoa ja klooria. Kiinteiden rakettien ominaisimpulssi on myös nesteraketteja huonompi. Ne kannattaisi korvata hiilivetypolttoainetta käyttävillä uudelleenkäytettävillä vaiheilla. Alemman vaiheen muuttaminen uudelleenkäytettäväksi lopettaisi myös tarpeettoman merenpohjan roskaantumisen rakettiromusta.

Vaikka rakettilaukaisussa kerosiini palaa niin että näkyy ja tuntuu, laukaisujen hiilidioksidipäästö ei silti ole ilmaston kannalta merkittävä. Vaikka laukaisutahti olisi tuhatkertainen nykyiseen verrattuna, hiilidioksidia tulisi raketeista vain likimain saman verran kuin Suomen henkilöautoista. Kantorakettien hiilivetypolttoaineita ei siis kannata hyljeksiä, vaikka niiden korvaaminen nestevedyllä olisi toki mahdollista. Kussakin kantoraketissa valinta nestevedyn ja hiilivetyjen välillä kannattaa tehdä teknisten, taloudellisten ja turvallisuusasioiden perusteella, kuten tähänkin asti.

Soyuzin laukaisussa kerosiinia palaa niin että näkyy ja tuntuu. Lähde: Wikimedia
Ylempi rakettivaihe voisi tietysti olla myös uudelleenkäytettävä. Jos se kuitenkin on kertakäyttöinen, sen materiaaleihin kannattaa kiinnittää hieman huomiota. Vaiheen pitää hajota ja palaa ilmakehässä täydellisesti ja myrkyllisiä alkuaineita ja raskasmetalleja pitäisi välttää. Esimerkiksi alumiini, magnesium ja monet muut tavalliset aineet ovat palamistuotteiltaan siistejä. Ilmakehän aiheuttama kuumennus on etu, koska se hajottaa monet myrkylliset yhdisteet. Ylemmän vaiheen saaminen siistiksi ei liene vaikeaa, kunhan asia pidetään mielessä.

Miten sitten satelliitit kannattaisi nostaa lopulliselle radalleen ja käytön jälkeen sieltä pois? Perinteinen ratkaisu on hydratsiini-typpitetroksidimoottori, mutta molemmat aineet ovat hyvin myrkyllisiä. Myrkyllisyys ei tosin ole avaruudessa kovin iso ongelma, koska ainemäärät ovat vain pari prosenttia kantorakettien polttoainemääristä. Joskus tosin näkee pääteltävän virheellisesti että kunhan poltto tehdään ilmakehän ulkopuolella, pakokaasuilla ei olisi merkitystä. Yleensä pakosuihku kuitenkin putoaa suoraa päätä ilmakehään, koska se liikkuu 3-3.5 km/s hitaammin kuin itse alus.

Polttoaineen myrkyllisyys on joka tapauksessa ongelma Maassa, kun rakettimoottoria testataan. Ongelma on erityisesti hapetin: ei tunneta vaaratonta huoneenlämpöistä nestettä, joka olisi samalla tehokas hapetin. Väkevä vetyperoksidi täyttää vaatimukset muuten, mutta se räjähtää pienestäkin epäpuhtaudesta. Ilokaasu ei ole yhtä herkkää räjähtämään, mutta se on melko tehotonta. (Ilokaasua taidettiin pitää hyvin turvallisena, kunnes Burt Rutanin Scaled Composites -yrityksessä tapahtui vuonna 2007 räjähdys jossa kuoli kolme ihmistä.) Polttoaineiden puolella on enemmän valinnanvaraa, voitaisiin käyttää esimerkiksi alkoholeja tai kerosiinia. Hydratsiini-typpitetroksidiyhdistelmän tunnettu etu on hypergolisuus, eli aineet reagoivat aina kohdatessaan, joten moottori käynnistyy varmasti ja poksahtelematta. Rakettimoottorin sytytys voi olla joskus iso ongelma. Italialaiset alkoivat pari vuotta sitten kehittää vetyperoksidi-etaanimoottoria, mutta eivät saaneet sytytystä toimimaan. Vaikka vetyperoksidi on monopropellantti ja hajoaa katalyyttisihdin läpi suihkutettaessa hyvin kuumaksi vesihöyryksi ja hapeksi, etaanin ja hapen välinen reaktio ei silti käynnistynyt. Projekti on tällä hetkellä hyllytetty kunnes joku keksii ongelmaan ratkaisun.

Ionimoottoreiden yleisin ajoaine on jalokaasu ksenon, jonka käyttö ei ole kuitenkaan pitkän päälle mahdollista, koska aine on kovin harvinainen. Ksenonia saadaan vuodessa tietty määrä ilmantislauksen sivutuotteena. Enempää ksenonia ei voida saada, koska ilmaa ei kannata tislata pelkästään ksenonin takia. Ksenon pitää siis jossakin vaiheessa korvata argonilla, vedellä tai muulla riittävän yleisellä aineella. Yleisesti ottaen ionimoottoreiden kehitystyö on kallista, koska pitkät toiminta-ajat vaativat pitkiä testiajoja tyhjiökammiossa. Monen ionimoottorityypin suurin ongelma on ionipommituksen aiheuttama osien vähittäinen kuluminen.

Avaruussukkula Atlantis Xenon-valojen loisteessa. Lähde: Wikimedia
Sähköpurjeen EU-projektin yhtenä osaprojektina kehitetään sähköstaattisia FEEP-ionimoottoreita (Field EffectElectric Propulsion) kohti sarjatuotantoa. Pienet FEEP-moottorit ovat monessa mielessä ihanteellisia ainakin paperilla, vaikka satelliitin päämoottoriksi ne riittäisivät vain suurena joukkona. Sähköpurjeen FEEP-vaihtoehdossa jokaisen liean kärkeen tulevaan etäyksikköön asennettaisiin FEEP-moottori. Moottoreilla käynnistettäisiin liekojen pyöriminen ja voitaisiin tarvittaessa muuttaa pyörimisnopeutta lennonkin aikana. FEEP-moottoreiden ajoaineena on joko nestemäinen metalli (indium tai cesium) tai jokin synteettinen ionineste eli huoneenlämpötilassa nestemäinen suola.

 

Avaruusromu


Tulevaisuudessa satelliitit pitää avaruusromuongelman takia poistaa kiertoradalta käytön jälkeen. Nykyinen ”hautausmaaratojen” käyttö geostationaarisen radan yläpuolella ei ole kestävä ratkaisu, koska hautausmaaradallakin satelliittiromuihin osuu meteoroideja ja muita satelliitteja, jolloin ne pirstoutuvat ja haudantakainen porukka laajenee surmaten elävätkin satelliitit. Satelliitti voidaan poistaa joko palauttamalla suoraan ilmakehään tai nostamalla ulos Maan painovoimakentästä. Ulos viety satelliitti voidaan edelleen törmäyttää Maan ilmakehään tai Kuuhun tai se voidaan jättää kiertämään Aurinkoa. Jos ei haluta ottaa riskiä että se törmäisi myöhemmin Maahan, esimerkiksi sähköpurjeen antaman lisätyöntövoiman avulla se voitaisiin tupsauttaa vaikkapa Venuksen ilmakehään. Jos satelliitti aiotaan palauttaa tehtävän päätyttyä Maahan, myrkyllisiä aineita pitäisi välttää kuten kantoraketeissakin. Satelliitin aiottu loppusijoitustapa pitäisi siis ottaa huomioon jo satelliitin suunnittelussa.

Romuongelmasta huolimatta satelliitteja mahtuu taivaalle paljonkin, kunhan niiden käsketään väistää toisiaan, ohjauskyvyttömät satelliitit poistetaan ja rakenteissa otetaan huomioon pienten törmäysten sietokyky ja vältetään sirpaloituvia materiaaleja. Mitä nopeammin vanhoja satelliittiromuja aletaan hakea kiertoradalta alas, sitä vähemmän ehtii tulla sirpaleparvia tuottavia satelliittikolareita. Romuasian ikävä puoli on se että vihamielinen taho pystyy halutessaan tekemään paljon kiusaa itselleen ja muille avaruusromua tuottamalla. Tosin onhan maan päälläkin moinen mahdollista monella tavalla.
Goce-1 satelliitti. Kuva: ESA
Vuorenvarma tapa olla tuottamatta lisää kiertorataromua ja olla samanaikaisesti immuuni vanhalle romulle on lennättää satelliittia niin matalalla radalla, että radan ylläpito tarvitsee jatkuvaa ionimoottorin tai sähködynaamisen liean työntövoimaa, kuten ESA:nGoce-satelliitissa. Kun satelliitti lakkaa toimimasta, se putoaa silloin itsestään ilmakehään.


Sähköpurje ja elektrolyysiraketti


Sähköpurjetta ei valitettavasti voi käyttää satelliittien siirtämiseen radalta toiselle, koska Maan magneettikenttä estää aurinkotuulen pääsyn sille alueelle missä satelliitit ovat. Sähköpurjeesta kehitettyä ns. plasmajarrua voi kuitenkin käyttää LEO-satelliitin pudottamiseen ilmakehään, kuten Avaruusluotaimessakin aiemmin on ollut juttua.

Aalto-1 satelliitti tulee testaamaan plasmajarrun toimintaa. Lähde: Wikimedia
Elektrolyysipropulsio on mielenkiintoinen konsepti satelliittien siirtelyyn, joka on tarjoamiinsa etuihin nähden saanut mielestäni liian vähän huomiota. Elektrolyysiraketti on tavallinen vety-happiraketti, jossa polttoaine kuitenkin säilötään veden muodossa. Vettä hajotetaan hitaasti elektrolyysillä vedyksi ja hapeksi käyttäen sähköenergiaa. Vety ja happi välivarastoidaan tankkeihin kaasumaisessa muodossa ja poltetaan pienessä rakettimoottorissa säiliöiden täytyttyä, minkä jälkeen alkaa uusi kierros. 

Elektrolyysiprosessi pystyy tuottamaan kaasuja paineella, joten pumppuja ei tarvita. Laite on turvallinen ja myrkytön ja vedyn ominaisimpulssi on 30% parempi kuin hydratsiinilla. Haittana on, että satelliitin nosto radalleen ei tapahdu välittömästi kuten hydratsiinilla, vaan kestää muutaman kuukauden, mikä on kuitenkin lyhyempi aika kuin ionimoottoria käytettäessä. Myös sähkötehoa tarvitaan, mutta satelliiteissahan on joka tapauksessa aurinkopaneelit. Elektrolyysiraketin tarvitsemaa pientä, uudelleenkäynnistettävää, kaasumaista vetyä ja happea polttavaa rakettimoottoria ei tietääkseni ole olemassa, mutta en uskoisi sellaisen kehittämisen olevan vaikeaa. Elektrolyysirakettien tarvitsemaa vettä voisi myöhemmin rahdata sähköpurjeilla asteroideilta ja siten välttyä nostamasta vettä Maasta kiertoradalle. Elektrolyysipropulsion tekeminen toimivaksi olisi oiva projekti-idea innovatiiviselle rakettitiimille.

Aurinkopurjeitakin voisi periaatteessa käyttää satelliittien siirtelyyn. Asiassa on kuitenkin periaatteellinen hankaluus: jotta auringon säteilypaine voittaisi ilmakehän jarrutuksen, satelliitti pitää ensin nostaa varsin korkealle radalle jollain muulla menetelmällä.

Aurinkovoimasatelliitti tuottaa kantorakettiensa tupruttamaa hiilidioksidipäästöä vastaavan energian takaisin muutamassa kuukaudessa. Kestävä ja laaja avaruustoiminta on mahdollinen, aurinkovoimasatelliittien käyttöönotto tai muu suursovellus ei ole siitä kiinni. Ehkä kestävä ja laaja avaruustoiminta tietää myös kestävää ja laajaa asutusta planeettamme pinnalla.

Pekka Janhunen

torstai 10. kesäkuuta 2010

Tarvittavia tekniikoita

Sähköpurjekolumni 10.6.2010

Sähköpurjeen EU-hakemuksen neuvottelut ovat käynnissä ja projekti alkanee joskus syksyllä. Projektin tavoitteena on rakentaa prototyypit sähköpurjeen avainkomponenteista ja siinä on mukana 5 Euroopan maata ja 9 partneria. Avainkomponentteja ovat itse lieka (tavoitteena tuottaa vähintään 1 km), liekarulla kelautuvuustesteineen ja ns. etäyksikkö jollainen sijoitetaan jokaisen liean kärkeen. Liekojen kärjet yhdistetään toisiinsa muovisilla apulieoilla, mikä stabiloi rakenteen mekaanisesti niin että sähköpurjeen lennon aikana liekarullia ei tarvitse kelailla edestakaisin liekojen pituuksien hienosäätämiseksi vaan selvitään ilman liikkuvia osia. Kukin etäyksikkö sisältää rullan josta siihen kuuluva apulieka avataan sekä pienen moottorin. Näiden moottorien avulla käynnistetään liekasysteemin pyöriminen avaamisen yhteydessä ja niiden avulla voidaan myös hidastaa tai nopeuttaa liekojen pyörimistä myöhemmin, mikäli tarve vaatii. Moottori voi olla joko kylmäkaasumoottori (pieni paineistettu kaasusäiliö jonka vieressä on venttiili ja suutin) tai ns. FEEP-ionimoottori. Sekä kylmäkaasu- että FEEP-moottorien prototyypit rakennetaan tässä EU-projektissa. Näillä moottoreilla voi olla käyttöä muuallakin kuin sähköpurjeessa, esimerkiksi satelliitin asennonsäätömoottorina tai piensatelliitin päämoottorina.

FEEP periaatekuva. Lähde: Alta


Liekojen päihin tulevat, 0.3-0.5 kg painavat etäyksiköt ovat vähän kuin nanosatelliitteja itsekin, tosin toiminnoiltaan riisuttuja.

Sähköpurjeen suunnittelijan pitää tavalla tai toisella estää pyörivien liekojen osuminen toisiinsa, vaikka aurinkotuuli vaihtelee ja tönii liekoja hieman eri tavalla. Liekojen kärkiä yhdistävät ja keskipakoisvoiman kaarelle painavat apulieat ovat yksi mahdollinen ratkaisu. Toinen mahdollisuus saattaisi olla asentaa kuhunkin etäyksikköön pieni, käännettävä aurinkopurje (valopurje). Valopurjeliuskan lapakulmaa säätämällä jokaista liekaa voitaisiin "lentää" niin että se pyörii halutulla nopeudella eikä törmää naapureihinsa. Vastaavalla periaatteella toimivia, heliogyroiksi kutsuttuja valopurjeita on tutkittu laskennallisesti, mutta ei lennätetty.

Heliogyron havainnepiirros. Lähde: NASA 1967
Erilaisten toimintahäiriöiden simulointi tulee olemaan välttämätöntä ja mielenkiintoista. Tavoite on että sähköpurje voisi toipua yksittäisen etäyksikön hajoamisesta tai liean katkeamisesta.

Pekka Janhunen